Adaptive Back-Propagation in On-Line Learning of Multilayer Networks
نویسندگان
چکیده
An adaptive back-propagation algorithm is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework , both numerical studies and a rigorous analysis show that the adaptive back-propagation method results in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent .
منابع مشابه
Convergence Analysis of Adaptive Recurrent Neural Network
This paper presents analysis of a modified Feed Forward Multilayer Perceptron (FMP) by inserting an ARMA (Auto Regressive Moving Average) model at each neuron (processor node) with the Backp ropagation learning algorithm. The stability analysis is presented to establish the convergence theory of the Back propagation algorithm based on the Lyapunov function. Furthermore, the analysis extends the...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملFuzzy ARTMAP based electronic nose data analysis
Ž . The Fuzzy ARTMAP neural network is a supervised pattern recognition method based on fuzzy adaptive resonance theory ART . It is Ž a promising method since Fuzzy ARTMAP is able to carry out on-line learning without forgetting previously learnt patterns stable . Ž . learning , it can recode previously learnt categories adaptive to changes in the environment and is self-organising. This paper ...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کامل